Compressive through-focus wavefield imaging
نویسندگان
چکیده
Optical sensing and imaging applications often suffer from a combination of low resolution object reconstructions and a large number of sensors which, depending on frequency, can be quite expensive or bulky. It is therefore desirable to minimize the number of sensors (which reduces cost) for a given target resolution level (image quality) and permissible total sensor array size (compactness). Equivalently, for a given imaging hardware one seeks to maximize image quality, which in turn means fully exploiting the available sensors as well as all priors about the properties of the sought-after objects such as sparsity properties, and other, which can be incorporated into reconstruction schemes. This paper proposes a compressive-sensing-based method to process through-focus optical field data captured at a sensor array. The proposed approach treats in-focus and out-offocus data as projective measurements for compressive sensing, and assumes that the objects are sparse under known transformations applied to them. The proposed compressive through-focus imaging is illustrated for both coherent and incoherent light. The results illustrate the combined use of through-focus imaging and compressive sensing techniques, and provide insight on the information in in-focus and out-of-focus data for coherent as well as incoherent light.
منابع مشابه
Compressive imaging by wavefield inversion with group sparsity
Migration relies on multi-dimensional correlations between sourceand residual wavefields. These multi-dimensional correlations are computationally expensive because they involve operations with explicit and full matrices that contain both wavefields. By leveraging recent insights from compressive sampling, we present an alternative method where linear correlation-based imaging is replaced by im...
متن کاملCompressive simultaneous full-waveform simulation
The fact that the numerical complexity of wavefield simulation is proportional to the size of the discretized model and acquisition geometry, and not to the complexity of the simulated wavefield, is the main impediment within seismic imaging. By turning simulation into a compressive sensing problem—where simulated data is recovered from a relatively small number of independent simultaneous sour...
متن کاملCompressive simultaneous full-waveform simulation1
The fact that the computational complexity of wavefield simulation is proportional to the size of the discretized model and acquisition geometry, and not to the complexity of the simulated wavefield, is a major impediment within seismic imaging. By turning simulation into a compressive sensing problem—where simulated data is recovered from a relatively small number of independent simultaneous s...
متن کاملRecovery of Seismic Wavefields Based on Compressive Sensing by an l1-Norm Constrained Trust Region Method and the Piecewise Random Sub-sampling
SUMMARY Due to the influence of variations in landform, geophysical data acquisition is usually sub-sampled. Reconstruction of the seismic wavefield from sub-sampled data is an ill-posed inverse problem. Compressive sensing can be used to recover the original geophysical data from the sub-sampled data. In this paper, we consider the wavefield reconstruction problem as a com-pressive sensing and...
متن کاملCompressive Sensing for Full Wavefield Image Recovery in Structural Monitoring Applications
In this paper, a random sampling scheme based on Compressive Sensing (CS) is used in order to reduce the acquisition time of wavefield signals by means of a scanning laser Doppler vibrometer (SLDV) for Structural Health Monitoring (SHM) applications. The sampling process is indeed quite time consuming, because of noise sources and reduced amplitude of acquired signals. By virtue of the sparse c...
متن کامل